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Abstract. The dominating set of a graph G is a set of vertices D
such that for every v ∈ V (G) either v ∈ D or v is adjacent to a ver-
tex in D. The domination number, denoted γ(G), is the minimum
number of vertices in a dominating set. In 1998, Haynes and Slater
introduced paired-domination. Building on paired-domination, we
introduce 3-path domination. We define a 3-path dominating set of
G to be D = {Q1, Q2, . . . , Qk|Qi is a 3-path} such that the vertex
set V (D) = V (Q1)∪ V (Q2)∪ · · · ∪ V (Qk) is a dominating set. We
define the 3-path domination number, denoted by γP3(G), to be the
minimum number of 3-paths needed to dominate G. We show that
the 3-path domination problem is NP-complete. We also prove
bounds on γP3

(G) and explore particular families of graphs such
as Harary graphs, Hamiltonian graphs, and subclasses of trees. We
leave the reader with a conjecture stating γP3

(G) ≤ n
3 .

1. Introduction

In this paper, assume any graph G = (V,E) is finite and simple with
vertex set V and edge set E. A dominating set D ⊆ V of G is a set
such that every vertex v ∈ V is either in D or adjacent to a vertex in D.
The domination number of G, denoted γ(G), is defined as the minimum
cardinality of a dominating set of G. One can think of vertices as rooms
and edges as hallways. The vertices of D are rooms where guards are
stationed with the ability to monitor adjacent rooms. Many variations
on domination have been studied. See Haynes et al. [3] for an intro-
duction to many of these areas. In 1998, Haynes and Slater introduced

E-mail address: rayankibrahim@gmail.com, rebeccalynnjackson1@gmail.com,

eking@hws.edu.
This material is based upon work supported by the National Science Foundation

under grant no. DMS 1757616.
1



2 INTRODUCING 3-PATH DOMINATION IN GRAPHS

paired-domination [5] in which the induced subgraph on a dominating
set of vertices contains a perfect matching. In this instance, we say
that every guard has another guard watching their back. The paired-
domination number, denoted γpr(G) (originally denoted as γp(G), but
later changed), is the minimum cardinality of a paired-dominating set
of G.

We introduce a natural extension of paired-domination, namely 3-
path domination. We say Qi is a 3-path if it is a path on some 3 vertices
{a, b, c} ∈ V (G) with edges {ab, bc} ∈ E(G). We define a 3-path dom-
inating set of G to be D = {Q1, Q2, . . . , Qk} such that the vertex set
V (D) = V (Q1) ∪ V (Q2) ∪ · · · ∪ V (Qk) is a dominating set. Here we
continue our anology by allowing stationed guards to walk between 3
rooms and look down hallways extending from those 3 rooms. The
3-path domination number, denoted γP3(G), is the minimum cardinal-
ity of a 3-path dominating set. We choose γP3 as notation since Pn is
commonly used to refer to the path graph on n vertices (that is, the
graph G with V (G) = {v1, v2, v3} and E(G) = {v1v2, v2v3}.) We will
use the abbreviation γP3-set for a minimum 3-path dominating set.

In this paper we prove that determining γP3 is NP-complete and then
establish bounds on γP3 for all graphs, specifically

γP3(G) ≤
⌊
n− 3

2

⌋
.

Tighter bounds and formulas for γP3 for specific families of graphs such
as caterpillars, Harary graphs, banana trees, paths, and cycles are also
explored. We leave off with a conjecture,

γP3 ≤
⌈n

3

⌉
,

based on results from Haynes and Slater [5] and mainly intuition.

2. The 3-path Domination Problem is NP-complete

In 1998, Haynes and Slater proved that the paired domination prob-
lem was NP-complete [5]. We generalize this result to show the 3-path
domination problem is also NP-complete.

Theorem 2.1. Deciding for a given graph H and positive integer K
such that 3K ≤ |V (H)|, “Is γP3(H) ≤ K?” is NP-complete.

Proof. We will use the known NP-complete domination problem,“For a
given graph G and a positive integer K, is γ(G) ≤ K?” [2]. Let V (G) =
{v1, v2, ..., vn}. Construct graph H by letting V (Gi) = {vi1, vi2, ..., vin}
for 1 ≤ i ≤ 6 and letting vihv

i
k ∈ E(Gi) if and only if vhvk ∈ E(G).

Let H be the graph created by these six disjoint copies of G and by
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adding the following edges. Let v1
hv

2
k, v

3
hv

4
k, and v5

hv
6
k be in E(H) if and

only if either h = k or vhvk ∈ E(G). Add the edges v1
hv

3
h and v3

hv
5
h

for 1 ≤ h ≤ n to H. Thus the graph H has 6n vertices and can be
constructed from G in polynomial time.

We claim that γ(G) ≤ K if and only if γP3(G) ≤ K.
Assume D ⊂ V (G) is a dominating set of G with |D| ≤ K. Let R

be a set of 3-paths with R = {{v1
h, v

3
h, v

5
h}|vh ∈ D}. Thus R is a 3-path

dominating set of H with |D| ≤ K, so γP3(H) ≤ K.
Now, assume R is a 3-path dominating set of G with |R| ≤ K. Let

T =
⋃
Qi∈R V (Qi). Since 3-paths are not necessarily disjoint and have

3 vertices each, |T | ≤ 3K. Thus since G1 ∪G2
∼= G3 ∪G4

∼= G5 ∪G6,
we can assume that |T1,2| = |T ∩ (V (G1) ∪ V (G2))| ≤ K. Let T ∗ =
{v2

h|v1
h ∈ T1,2}∪(T ∩V (G2)). Then |T ∗| ≤ |T1,2| ≤ K and T ∗ dominates

V (G2). Hence, γ(G) ≤ K. �

Having shown that the 3-path domination problem is NP-complete,
we find bounds on γP3 and formulas for families of graphs.

3. Bounds On the 3-path Domination Number

We find bounds based on the parameters of a graph G, namely γ(G),
γpr(G), and the maximum degree of a vertex in G, denoted ∆(G). Note
that 3-path domination requires any component of a graph to have at
least three vertices.

Theorem 3.1. For a graph G on n ≥ 3 vertices, γ(G)
3
≤ γP3(G).

Proof. Let D be γP3-set of G and V (D) be the set of vertices in D. Then
|V (D)| ≤ 3|D| = 3γP3(G) since counting 3 vertices per 3-path does not
account for 3-paths that share vertices, this may result in overcounting.
Furthermore, |V (D)| ≥ γ(G) as V (D) forms a dominating set of G. So
we have

γ(G) ≤ |V (D)| ≤ 3γP3(G),

and solving yields γ(G)
3
≤ γP3(G). �

For the next lower bound, we generalize an argument from Haynes
and Slater involving ∆(G). [5]

Theorem 3.2. For a connected graph G on n ≥ 3 vertices, n
3∆(G)

≤
γP3(G).

Proof. Let D be a γP3-set of a graph G on n vertices, and let t be
the number of edges in G having one vertex in V (D) and the other in



4 INTRODUCING 3-PATH DOMINATION IN GRAPHS

V (G) \ V (D). Since ∆(G) ≥ deg(v) for all v ∈ V (D) and each vertex
in V (D) has at least one neighbor in V (D),

t ≤ (∆(G)− 1)|V (D)|
≤ (∆(G)− 1)3γP3(G).

In addition, t ≥ |V (G) \ V (D)| since there is at least one edge for
every vertex in G that is not in V (D). So,

t ≥ |V (G) \ V (D)|
= n− |V (D)|
≥ n− 3γP3(G).

So we have n−3γP3(G) ≤ t ≤ (∆(G)−1)3γP3(G), and solving yields
n

3∆(G)
≤ γP3(G). �

Having established some lower bounds on γP3 , we explore some upper
bounds.

Theorem 3.3. For a connected graph G on n ≥ 3 vertices, γP3(G) ≤
γpr(G)

2
.

Proof. Let G be a graph with |V (G)| ≥ 3 and D be a γpr-set of G.

Since there are γpr(G)

2
pairs of vertices in D, we can create a 3-path

using each pair and a neighbor. This forms a 3-path dominating set

with cardinality γpr(G)

2
. �

Notice that the pairs of vertices in a γpr-set are vertex disjoint (if
they are not vertex disjoint, then the induced subgraph on a γpr-set
would not contain a matching, let alone a perfect matching.) This is
not always the case for 3-path domination, as shown in Figure 1.

For the following lemma, we note that a 3-path dominating set of
a graph G is minimal if the removal of any one 3-path from the set
results in G no longer being dominated. A private neighbor of a 3-path
Q is a vertex that is dominated by Q and no other 3-path.

Lemma 3.4. For a graph G with n ≥ 3, there exists a minimal 3-path
dominating set that is edge-disjoint.

Proof. Let G be a graph and D be a minimal 3-path dominating
set on G. Suppose there are two 3-paths in D that share an edge,
Q1 = {v1, v2, v3} and Q2 = {v2, v3, v4}. Consider the following two
possibilities:

Referring to Figure 2, Q1 and Q2 each have at least one private
neighbor. If Q1 or Q2 do not have any private neighbors, then D is
not minimal as G would still be dominated if we remove one path
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v2

v1

v5

v3

v4

Figure 1. An example of a γP3-set with γP3(G) = 2.
Notice both 3-paths must share the vertex v2. This is
independent of our set being {v1v2v3, v4v2v5} or
{v1v2v5, v4v2v3}

v1

v2

v3 v4

v1 v2 v3 v4

Figure 2. The configurations where two 3-paths,
namely {v1, v2, v3} and {v2, v3, v4}, can share an edge.

without private neighbors. Let p1 be a private neighbor of Q1 and p2

be a private neighbor of Q2. Note, p1 must be adjacent to v3 on the
left case and v1 on the right case, and p2 must be adjacent to v4 in
both cases, otherwise they would be dominated by both Q1 and Q2.
Without loss of generality, we set Q′1 = {v2, v3, p1} in the left case, and
Q′1 = {p1, v2, v3} in the right case, making Q′1 and Q2 edge-disjoint.
After this change, D is not guaranteed to be minimal. If D is no longer
minimal, it must be the case that Q′1 dominates what were the only
private neighbors of some other 3-paths before the change. So, we can
remove 3-paths that do not have any private neighbors in a way such
that we obtain a new minimal 3-path dominating set D′. Repeat this
process until there are no longer any edge-intersecting 3-paths. �

Corollary 3.5. For a connected graph G on n ≥ 3 vertices, γP3(G) ≤⌊
|E(G)|

2

⌋
.

Proof. Let G be a graph with |V (G)| ≥ 3 and D be a 3-path dominating
set of G. Using Lemma 3.4, D can be made such that no two 3-paths in
D share an edge, and so we can count one 3-path for every two unique

edges. In the case that G has an odd number of edges, we count |E(G)|−1
2
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pairs of edges for each 3-path. The resulting set of 3-paths would still
be a dominating set, as the remaining edge, say vhvk, must be incident
to one of the counted edges, and thus vh and vk are dominated. So we

have |D| ≤
⌊
|E(G)|

2

⌋
. �

Having an upper bound in terms of the number of edges of G is useful
when dealing with classes of graphs whose number of edges directly
relate to the number of vertices. For example, if we consider a tree T
on n vertices, |E(T )| = n − 1, and so γP3(T ) ≤

⌊
n−1

2

⌋
. Using similar

logic in the odd case of Corollary 3.5, we can improve this upper bound
for trees. For the next corollary, we say a leaf of a tree is a vertex of
degree 1, and the diameter of a graph G is the longest path between a
pair of vertices in G, denoted diam(G).

Corollary 3.6. For a tree T on n ≥ 3 vertices with diam(T ) ≥ 4,
γP3(T ) ≤

⌊
n−L−1

2

⌋
where L is the number leaves of T .

Proof. Let T be a tree on n ≥ 3 vertices, L be the number of leaves
of T , and diam(T ) ≥ 4. Using Corollary 3.5, we have γP3(T ) ≤

⌊
n−1

2

⌋
.

Notice that we do not need to use any leaves in a 3-path, as all leaves
must be adjacent to a vertex in a 3-path. So, we only need to use at
most n − L vertices to make our 3-path dominating set, or at most
n− L− 1 edges. So γP3(T ) ≤

⌊
n−L−1

2

⌋
. �

Note that the bound does not work for diam(T ) = 2 or diam(T ) = 3.
If diam(T ) = 2 then T has n − 1 leaves, and so we obtain γP3(T ) ≤ 0
when γP3(T ) = 1. If diam(T ) = 3 then γP3(T ) = 1, however we may
obtain γP3(T ) ≤ 0 if T is the path graph on 4 vertices.

Consider the following observation.

Observation 3.7. If an edge is added to a graph G to form a new
graph G∗, then γP3(G

∗) ≤ γP3(G).

Intuitively, one can think of adding edges as increasing the adjacen-
cies in a graph. The more adjacencies in a graph, the less number of
3-paths are needed to dominate the graph. Refer to Figure 3 for an
example.

A spanning tree T of a graph G is a tree such that V (T ) = V (G)
and E(T ) ⊆ E(G). We now use Observation 3.7 and spanning trees to
establish a bound for general graphs.

Theorem 3.8. For any connected graph G, γP3(G) ≤
⌊
n−3

2

⌋
.

Proof. Let G be a graph on n vertices and let TG be its spanning tree.
Notice, since V (TG) = V (G) and E(TG) ⊆ E(G), we can construct G
from TG by adding the missing edges in E(G)\E(TG). By Observation
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v1 v2 v3 v4 v5 v6

v1 v2 v3 v4 v5 v6

v1 v2 v3 v4 v5 v6

Figure 3. An example of how adding edges to a graph
can eliminate the need for a 3-path in the resulting graph.
We start with paths {v1v2v3} and {v4v5v6}. When we
add an edge, we end up only needing one 3-path, namely
{v2v3v4}.

3.7, every new graph gained by adding an edge and starting from TG
will potentially have a lower 3-path domination number. So, γP3(G) ≤
γP3(TG), and since TG is a tree on n vertices, γP3(TG) ≤

⌊
n−L−1

2

⌋
where

L is the number of leaves of TG. Since L ≥ 2 for trees with at least 2
vertices, γP3(TG) ≤

⌊
n−3

2

⌋
. �

Note that spanning trees are not necessarily unique. A graph may
have several spanning trees and we can improve this bound if we are
particular about our choice of a spanning tree. A maximum leaf span-
ning tree (MLST) of a graph G is a spanning tree of G that has the
most leaves possible. Choosing a MLST as a spanning tree allows us
to maximize L in the upper bound given in Corollary 3.6, and in turn,
gain a tighter upper bound. The MLST problem is NP-complete, how-
ever Fernau et al. present a branching algorithm for finding a MLST
in time O(1.8966n) [2] [1]. In addition, there are polynomial time ap-
proximation algorithms for the MLST problem [4]. As a final note, the
MLST problem is analogous to the connected dominating set problem.
A set D is said to be a connected dominating set if for every v, u ∈ D,
there is a path from v to u using only vertices in D.

We present a natural conjecture for an upper bound.

Conjecture 3.9. For any connected graph G on n ≥ 3 vertices,
γP3(G) ≤ dn

3
e.

We base our conjecture on intuition (as one would), as well as the
following.

Theorem 3.10. [5] If the connected graph G has n ≥ 6 and δ(G) ≥ 2,
then

γpr(G) ≤ 2n

3
.
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Using Theorem 3.3 and Theorem 3.10, we can establish the following
theorem.

Theorem 3.11. If the connected graph G has n ≥ 6 and δ(G) ≥ 2,
then

γP3(G) ≤ n

3
.

4. Classes of Graphs and Their 3-path Domination Number

While results for all connected graphs are desirable, it is useful to
restrict ourselves to families of graphs to obtain formulas and tighter
upper bounds. A path graph denoted Pn, is a connected graph on n
vertices with two vertices of degree 1, and n− 2 vertices of degree 2. A
cycle, denoted Cn, is a connected graph on n vertices where deg(v) = 2
for every v ∈ V (Cn).

Theorem 4.1. For n ≥ 3, γP3(Pn) = γP3(Cn) =
⌈
n
5

⌉
.

Proof. Suppose we have Pn for n ≥ 3. Say n = 5q + k for nonnegative
integers q and k < 5. If k = 0, we can partition Pn into q vertex-disjoint
segments Si where |V (Si)| = 5 (Refer to Figure 4.) If 1 ≤ k < 5, we
have q vertex-disjoint segments Si where |V (Si)| = 5, and one left over
segment Sq+1 with k vertices. We can dominate at most five vertices
with a 3-path in Pn, specifically the three in the 3-path and potentially
two others adjacent to the ends. In order to dominate in the best
possible manner, the vertices adjacent to the ends of a 3-path must be
private neighbors of the 3-path. Notice by the way we segment Pn, each
3-path will have the maximum number of private neighbors, with the
exception of the additional 3-path needed to dominate the remainder
segment and its adjacent segment (the 3-paths of Sq and Sq+1 may
share neighbors). So, we have dominated Pn in the best way possible.

The same logic holds for Cn, as the maximum possible number of
private neighbors for a 3-path in Cn is 5. �

. . .

S1 S2

Figure 4. Path graph where black vertices are in a 3-path.

Corollary 4.2. If G has a Hamiltonian path, then γP3(G) ≤
⌈
n
5

⌉
.
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Proof. Suppose Pn is a Hamiltonian path of G. Since γP3(Pn) =
⌈
n
5

⌉
and G is obtained from Pn by adding edges, by Observation 3.7, we
find that γP3(G) ≤

⌈
n
5

⌉
. �

Introducing even the slightest complexity to a graph can hinder our
ability to find a formula for γP3(G). One such exampleis the caterpillar
tree. A caterpillar is a tree in which every leaf is adjacent to a central
path, or stalk. See Figure 5 for an example.

Figure 5. An example of a caterpillar with central stalk
having 11 vertices (black). The removal of leaves yields
the path graph P11.

We will use the following observations in order to prove the next
theorem.

Observation 4.3. If a vertex u is adjacent to a vertex of degree 1 in
V (G), then u must be part of a dominating 3-path.

Observation 4.4. If a new vertex is connected by a single edge to a
graph G to form a new graph G∗, then γP3(G) ≤ γP3(G

∗)

Theorem 4.5. Let A be a caterpillar with stalk S and let m = |V (L)|.
Then

⌈
m+2

5

⌉
≤ γP3(A) ≤

⌈
m
3

⌉
.

Proof. Let A be a caterpillar with stalk S such that |V (S)| = m and
L leaves. Then there exists a longest path in A, Pm+2, such that
V (L) ⊆ Pm+2. Any vertex in V (A \ Pm+2) must be adjacent to a
vertex of Pm+2. Thus γP3(A) ≥ γP3(Pm+2) by Observation 4.4. By
Theorem 4.1, γP3(Pm+2) ≥

⌈
m+L

5

⌉
.

Let A be a caterpillar such that every vi ∈ V (S) is adjacent to a
leaf. Then, each of the vi must be part of a 3-path by Observation 4.3.
Furthermore, since every vertex of A is either in V (S) or adjacent to a
vertex in V (S), V (S) is a dominating set of A. So we pick our 3-paths
Qi such that that they are vertex disjoint, or V (Q1)∩ V (Q2)∩ · · · = ∅
for every Qi except for possibly two. Notice that if m is not a multiple
of 3, then two of our 3-paths cannot be vertex disjoint. The least
number of 3-paths we can take in this case is

⌈
m
3

⌉
. So the maximum

number of 3-paths needed for a caterpillar is at most
⌈
m
3

⌉
. �
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Figure 6. A caterpillar in which every vertex that is
not a leaf is adjacent to a leaf. Black vertices are those
that must be included in a 3-path, and so we partition
the vertices in groups of 3 (with the possible exception
of two 3-paths) to use the least number of 3-paths as
possible.

A banana tree, denoted Bn,k, is a tree composed of n copies of a K1,k

graph in which one leaf from each copy is joined by an edge to a vertex
called the root vertex (See Figures 7 and 8 for examples).

Theorem 4.6. The following formulas hold for γP3(Bn,k).

(1) For k = 1 and n ≥ 2, γP3(Bn,1) = 1.
(2) For k = 2, γP3(Bn,2) =

⌈
n
2

⌉
.

(3) For k ≥ 3, γP3(Bn,k) = n.

Proof. (1) For k = 1 and n ≥ 2, Bn,1 is a star, K1,n. Any 3-path
in a star will contain the center vertex and thus dominate all
vertices. Hence, γP3(Bn,1) = 1.

(2) For k = 2, we pick our 3-paths in the following process. By
Observation 4.3, every vertex adjacent to a leaf must be in a
3-path. In the case of Bn,2, this will be the vertices adjacent
to the root vertex. Since including leaves in a 3-path will not
dominate anything new, we choose to include the root vertex
as part of all 3-paths. Then, we make unique pairs of support
vertices. If n is even, all have a pair. If n is odd, then the last
3-path will include the nth star’s leaf. See Figure 7.

(3) For k ≥ 3, by Observation 4.3, the center vertex of every copy
of K1,k must be part of a 3-path. It is impossible to include any
two centers in the same 3-path. So we obtain a 3-path for each
copy of K1,k, and we make sure that at least one 3-path contains
the root vertex. So, since we have n copies, γP3(Bn,k) = n. See
Figure 8.

�
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r

s1 s2 s3 s4 s5

r

s1 s2 s3 s4 s5 s6

Figure 7. The banana trees B5,2 and B6,2. We pair up
the support vertice si each with middle vertex r to form
a 3-path. In the n odd case we use the leaf of the last
3-path.

Figure 8. The banana tree B5,10, where dominated ver-
tices are white, red vertices are in a 3-path, and 3-paths
are indicated by colored edges.

A Harary graph, denoted Hk,n, is a k-regular graph of order n with
k ≤ n − 1 and V (G) = {v1, v2, . . . , vn}. If k is even, then k = 2j for
some j and we join vi to {vi−j, vi−j+1, . . . , vi−1, vi+1, . . . , vi−1+j, vi+j}.
If k is odd, then k = 2j + 1 for some j and n = 2` for some `, and
we join vi to {vi−j, vi−j+1, . . . vi−1, vi+1, . . . , vi−1+j, vi+j} and vi+`. See
Figure 9 for an example.

Theorem 4.7. For k even, we have γP3(Hk,n) =
⌈

n
2k+1

⌉
.

Proof. Suppose we have G = Hk,n for k even. To construct a 3-path
Q, we choose any vertex m to be the middle vertex of our 3-path
and then choose neighbors t1, t2 such that there is a path of length
k
2

from m to ti (farthest on the cycle composed of {v1, . . . , vn} and
{v1v2, v2v3, . . . vn−1vn, v1vn}. Notice, m dominates k + 1 vertices, and
each of the ti have an additional k

2
private neighbors so long as n is

sufficiently big. So, Q dominates k+ 1 + k
2

+ k
2

= 2k+ 1 vertices. Note,
Q dominates the largest number of vertices possible by a 3-path in G,
since if we choose the ti that are closer on the cycle to m, they would
share more neighbors with m, hence dominating less vertices uniquely.
In addition, all the dominated vertices lie on a single path (Figure 9).
We can partition G into segments of 2k + 1 vertices and possibly one
segment with less than 2k + 1 vertices if 2k + 1 does not divide n. We
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choose the 3-path for each of those segments, and thus we can dominate
with

⌈
n

2k+1

⌉
3-paths and no fewer. �

k + 1

k
2

k
2

Figure 9. The Harary Graph H6,20 where the black ver-
tices are in a 3-path and the gray vertices are dominated
vertices that are not in a 3-path.
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