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Abstract

A simple model for human circadian system is studied. The behavior of
humans and other animals is differentiated by precise 24-hour cycles of rest
and activity, sleep and restlessness. These cycles termed circadian rhythms
and represent a fundamental adaptation of organisms to a pervasive environ-
mental stimulus; the solar cycle of light and dark. A fundamental property
of circadian rhythm is that it is free-running, and continues with a period
close to 24 hours in the absence of light cycles or other external cues. The
sleep-wake and body temperature rhythms are assumed to be determined
by a pair of coupled nonlinear oscillators described only by phase variables.
This article presents principles of mathematical modeling on human circa-
dian system and how other important two-dimensional phase space systems
work.

Key words: Circadian—Oscillator—Model—Sleep—Human
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1 Introduction

The circadian cycle has been studied mathematically using oscillators and
other non-linear dynamical models to describe features of sleep-wake rhythms.
A review of early mathematical models of sleep-wake cycle is given by Pro-
fessor Steven H. Strogatz [1]. The free run studies of human subjects which
lived alone clock-less environment, absence of external light-dark cycle and
other 24 hour periodicity of the outside word had been analyzed by Czeisler
and Wever. Their experimental data discovered some surprising regularities
in timing of the subjects’ spontaneous sleep episodes. In many mathemat-
ical model, postulated at least a pair of oscillators to describe occurrence
of “Spontaneous internal desychronization” between the sleep-wake cycle
and various autonomic circadian rhythms. Strogatz emphasized that a free-
running subject unknowingly lives on a “day” which is longer than 24 hours
during internal desynchronization. More precisely, a free-running subject
lives 30-50 hr long day and during this period their body temperature and
neuroendocrine variables controlled by the circadian pacemaker continue to
oscillate with a stable period of 24-25 hr. This phenomenon does not occur
in real life. In ordinary life, on regular schedule, the circadian and sleep-
wake rhythms are typically phase-locked to one another and to the 24-hr
environment.

The purpose of this article is to revisit the simple model of the human
sleep-wake cycle proposed by Steven H. Strogatz [1]. This model based on
two-dimensional phase space on tours, which the equations may be solved
analytically, as well as numerically. The resulting analytically transparency
allows us to sort out which of the observed phenomena follow from simple
mathematical consideration alone, as distinct from those which require some
additional biological explanation.

The remainder of this paper is organized as follows: Circadian models
incorporating light responses have been seen, for some parameter ranges, to
exhibit multiple dynamic behaviors, including coexistence of a steady state
and an oscillating solution or coexistence of two oscillating solutions. There-
fore, in Section 2 a discussion on dynamical systems and its basic concepts
including: asymptotic behavior, stability of fixed points for one and two
dimensional systems and their classifications, bifurcation theory, as well as
dynamical system on a circle. Section 3 reviews the general case of uncoupled
oscillators. In Section 4, an analysis is done on Strogatz’s simple model of
the human sleep-wake cycle, and finally in Section 5 indicates how Oscillators
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death and bifurcations on a torus works using the Ermentrout and Kopell’s
(1990) model “Oscillator death”.

2 Dynamical Systems [1]

2.1 Introduction

Vaguely speaking, a dynamical system is in which a function describes the
time dependence of a point in a geometrical space.They’re two main types of
dynamical system: differential equation and iterated maps. The differential
equations part involves the evolution of systems in continuous time, while
the iterated maps, often times called a difference equation, contain problems
where time is discrete. Examples of modeling continuous-time dynamical
system are: swinging clock pendulum, the flow of water in a pipe and popu-
lation dynamics. An example of a model in difference equations is the logistic
map.

2.2 Asymptotic Behavior

An asymptotic behavior of a dynamical system refers to the long-term evolu-
tion of the solutions of the system as time goes to infinity. The subset of the
phase space on which the trajectories reside at t → ∞ is known as a limit
set. These limit sets consider the dynamical system:

ẋ1 = f1(x1, . . . , xn)
...

ẋn = fn(x1, . . . , xn)

(where ẋ is known as time derivative) as a vector field, where the limit sets
organizes their flow in their own vicinity. A limit set is called an attractor
if all trajectories in the neighborhood moved towards this limit set and a
repellor if the vector flow is directed away from the limit set. The simplest
kind of limit set is an equilibrium point or a fixed point.
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2.3 Fixed Points and Their Stability

In a simple case where n = 1 in the system above, we have a one-dimensional
system: ẋ = f(x), where the fixed point of ẋ is obtained by setting the
equation ẋ = f(x) = 0, where a fixed point would be denoted as x∗. However,
obtaining any fixed point for a n-dimensional system follows as:

ẋ1 = f(x1, . . . , xn) = 0
...

ẋn = f(x1, . . . , xn) = 0

Consider a one-dimensional dynamical system ẋ = f(x) on the real line
R2.

Figure 1: A plot of ẋ = f(x) with two fixed points.

The figure above shows that f(x) has two solutions. These solutions, or
fixed points, are determine their stability by the signs from the left and right
of the fixed point. The first fixed point on the far left shows that it is stable
since f(x) < 0 to the right and f(x) > 0 is positive to the left, therefore the
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flow will go towards the fixed point, making it stable, denoted as a closed
circle. The other fixed point to the right is unstable due to the fact that
f(x) < 0 to the left of the fixed point and f(x) > 0 to the right of the fixed
point, thus making it unstable, denoted as an opened circle.

A two-dimensional dynamical system is in the form:{
ẋ1 = ax1 + bx2

ẋ2 = cx1 + dx2

where a,b,c, and d are parameters.
This system can be modified in the form of a matrix system:

ẋ = Ax

where A is a 2×2 matrix and ẋ and x are 2×1 vectors, in which this equation
can be viewed as: [

ẋ1
ẋ2

]
=

[
a b
c d

] [
x1
x2

]
Generally, this system is linear in the sense that if x1 and x2 are solutions

to ẋ, thus so is any linear combination c1x1 + c2x2. Note that when ẋ = 0
then x = 0, if det(A) 6= 0; however, for any A,x∗ = 0 will always be a fixed
point for any A.

Unlike a one-dimensional dynamical system where a fixed point is simply
stable or unstable (or semi-stable in some cases), a two-dimensional systems
have more in depth classifications of a fixed point.

Figure 2: Few of the Types of Fixed points

Figure 2 above summarizes general types of fixed points in a two-dimensional
system. Typically, they are five different types of fixed points: nodes, saddle,
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stars, spirals and centers. They are classified according to the the matrix’s
A eigenvalues of the linearized dynamics at the fixed point. For a real 2× 2
matrix, the eigenvalues must be real or else must be a complex conjugate
pair. The five fixed points are then classified by their eigenvalues (denoted
as λ) such that:

1. λ1 > 0, λ2 > 0 implies that the fixed point, x∗, is an unstable node.

2. λ1 > 0, λ2 < 0 denotes that x∗ is a saddle point.

3. λ1 < 0, λ2 < 0 denotes that x∗ is a stable node.

4. Re(λ1) > 0, λ1 = λ2 denotes that x∗ is an unstable spiral.

5. Re(λ1) < 0, λ1 = λ2 denotes that x∗ is a stable spiral.

Although one can use the eigenvalues to determine the classification of a
fixed point, one can also use a geometric interpretation of the classification
of any fixed point.

Figure 3: A diagram of the classifications of a fixed point in a two-dimensional
system, where ∆ = λ1λ2 and τ = λ1 + λ2
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2.4 Flows on the Circle

For the most part, one can focus a one-dimensional system ẋ = f(x), which
can be visualized as a vector field on the line; however, one can also consider
a new type of differential equation and its corresponding phase space:

θ̇ = f(θ)

The equation above corresponds to a vector field on the circle, where θ is a
point on the circle and θ̇ is the velocity vector at that point. Similar to the
line, the circle is one-dimensional, but it has a unique property: flows in one
direction, i.e. a particle can eventually return to its starting place as shown
in the figure below:

Figure 4: A vector field on the circle with a positive angular velocity.

Generally speaking, with this scenario, vector fields on the circle can
provide the most basic model of systems that can oscillate.

2.4.1 Uniform Oscillator

A point on a circle is often called an angle or phase. A simple case of an
oscillator is when the phase θ changes uniformly:

θ̇ = ω

where ω is a constant, thus the solution to this equation is

θ(t) = ωt+ θ0,
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which corresponds to uniform motion around the circle at an angular
frequency ω. This solution, θ(t), is considered to be periodic because θ(t)
changes by 2π, and therefore returns to the same point on the circle after

time T =
2π

ω
, where T is the period of the oscillation.

2.4.2 Nonuniform Oscillator

The equation
θ̇ = ω − a sin(θ)

arises in many different applications in science and engineering, more specif-
ically with biology on oscillating neurons, firefly flashing rhythms, and the
human sleep-wake cycle.

To analyze the equation above, assume that ω > 0 and a ≥ 0 for con-
venience. The result for a negative ω and a are similar. A typical graph of
f(θ) = ω − a sin(θ) is shown below in figure 5:

Figure 5: a typical graph of a nonuniform oscillator where ω is the mean and
a is the amplitude.

The parameter a introduces a non-uniformity in the flow around the

circle: the flow is at is fastest at θ = −π
2

and at its slowest at θ =
π

2
. When

a is slightly less than ω, the oscillation is very spasmodic. When a = ω,
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the system stops oscillating altogether: a semi-stable fixed point has been

created at θ =
π

2
. Last, when a > ω, the semi-stable fixed point is split into

two fixed points: one stable and one unstable.

Figure 6: On the left is when a = ω with a semi-stable fixed point and the
other on the right a > ω with two fixed points.

The same information can be shown by plotting the vector fields on the
circle below:

Figure 7: Far left vector field shows a semi-stable fixed point when a = ω
and the right shows a vector field with two fixed points when a > ω
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2.5 Bifurcations

A qualitative change in the behavior of a system upon a parameter variation
is called bifurcation. Examples include changes in the number or stability of
fixed points, closed orbits, or saddle connection as a parameter is varied.

The saddle-node bifurcation is the basic mechanism in which fixed points
are either created and destroyed. As a parameter is varied, two fixed points
move toward each other, collide, and mutually annihilate. The prototype
example of a saddle-node bifurcation is given by the first order system:

ẋ = r + x2

where r is a parameter, and x∗ = ±
√
−r. Thus, if r < 0 then there exist two

fixed points that are stable and unstable. If r = 0 then there will be a semi-
stable fixed point. If r > 0 then there will be no fixed point in the system
since x∗ will produce a complex solution. With all of the information above,
one can used this to produce a graph that is called a bifurcation diagram.
With this graph, one can view for what values of r will produce a system
that will contain fixed points or not.

Figure 8: The three graphs shows the typical graph for ẋ = r + x2 as the
signs for r varies.

11



Figure 9: This is a graph of the bifurcation diagram with the independent
variable begin r and the dependent variable being x∗. The dotted curve
shows when the system, ẋ, is unstable for the parameter r.

For two-dimensional system, consider the following prototypical example:{
ẋ = µ− x2

ẏ = −y

In the x-direction,the bifurcation behavior is similar as discussed previ-
ously with a one-dimensional; however,the y-direction’s motion is exponen-
tially damped since the solution to ẏ is negative.

As before, the fixed points of this system occurs when ẋ = 0 and ẏ = 0. So
the two fixed points of this system occurs at (x∗, y∗) = (

√
µ, 0) and (−√µ, 0).

As the values of µ decreases, the saddle and node approach each other, while
at µ = 0 is where they will collide and the fixed points dissipate when µ < 0,
in which it becomes a ”ghost” since no fixed points occur.
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Figure 10: The figure shows how for a varying parameter µ, creates fixed
points and how it destroys them. For µ > 0 the two fixed points are (µ, 0)
and (−µ, 0) in which they are stable and unstable respectively.

3 Coupled and Uncoupled Oscillators

3.1 Introduction

Like a dynamical system in rectangular coordinates, a dynamical system on
the circle can be viewed in two-dimensions. Its phase space is the torus and
it’s the natural phase space for the system of the form:{

θ̇1 = f1(θ1, θ2)

θ̇2 = f2(θ1, θ2)

where f1 and f2 are periodic in both arguments.
A simple model of coupled oscillators is given by{

θ̇1 = ω1 +K1 sin(θ2 − θ1)
θ̇2 = ω2 +K2 sin(θ1 − θ2)

where θ1, θ2 are the phases of the oscillators, ω1, ω2 > 0 are their natural
frequencies, and K1, K2 ≥ 0 are known as the coupling constants.

In order to illustrate some of the general features of the flow on the tours,
imagine two points going around in a circle at instantaneous rate of change
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θ̇1, θ̇2. Another way of looking at it is to consider coordinates θ1, θ2, in which
they are analogous to latitude and longitude.

Figure 11: A generalization on how a single point traces a trajectory.

However, this makes it very difficult to draw phase portraits, thus we
view it in a square with periodic boundary conditions. But if a trajectory
runs of an edge, it reappears on the opposite edge.

Figure 12: Phase portraits of the tours on a square with periodic boundary
conditions.

3.2 Uncoupled Oscillators

The trivial case of uncoupled oscillators, where K1, K2 = 0 contains some
interesting results. With the coupling constants being 0, this reduce the
equation into θ̇1 = ω1, θ̇2 = ω2. The corresponding trajectories on the square

will produce straight lines with constant slopes
dθ2
dθ1

=
ω2

ω1

. However, there

will be two cases depending on whether the slope is rational or irrational.

For the case of being rational, in which
ω2

ω1

=
p

q
, where p, q are some

integers with no common factors. In this scenario, all trajectories are closed
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orbits on the tours, because θ1 completes p revolution in the same time that
θ2 completes q revolution.

Figure 13: A trajectory with rational slope

If the trajectory was to be plotted on the torus, a trefoil knot will be
produced.

Figure 14: An image of a trefoil knot and the trefoil knot on the tours from
a view from the top of the tours.

The second case where the slope is irrational, the flow is said to be quasi-
periodic, meaning that every trajectory goes around endlessly on the torus,
never intersecting itself and yet never quite closing.
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Figure 15: A trajectory that has irrational slope which is known to be quasi-
periodic.

Quasi-periodicity is significant, especially in a scenario like this because
quasi-periodicity only occurs on the torus and it is a new type of a long-term
behavior.

3.3 Coupled Oscillators

The dynamics can be analyzed by viewing the phase difference by setting
φ = θ1 − θ2, thus the model can be observed as

φ̇ = θ̇1 − θ̇2
= ω1 − ω2 − (K1 +K2) sin(φ)

in which this is now a nonuniform oscillator as observed in 2.4.2. Two
fixed points will emerge if |ω1−ω2| < K1+K2 and none if |ω1−ω2| > K1+K2.
A saddle-node bifurcation will occur if |ω1 − ω2| = K1 +K2.
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Figure 16: A graph of φ̇. All the trajectories are asymptotically approaching
the stable fixed point.

Now suppose there are two fixed points defined as:

sin(φ∗) =
ω1 − ω2

K1 +K2

As shown in figure 13, all trajectories of φ̇ are asymptotically approaching
the stable fixed point. Thus, on the torus, the trajectories of the system θ1, θ2
approach a stable phase-locked solution, in which the oscillators are separated
by a constant phase difference φ∗.

4 PHASE Model [2]

4.1 Introduction

Strogatz discussed main findings of free-run experiments of Circadian rhythm
in section 2 of his article ”Human sleep and circadian rhythms: a simple
model based on two coupled oscillators”. He emphasized that there were
apparent regularities which were consistent across internally desynchronized
subjects:

1. Long sleep episode begin near high temperature and shorter sleep episodes
begin near the temperature through.
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2. Almost all awakening occur on the rising limb of the temperature cycle
and practically none occurs in the quarter-cycle before the temperature
minimum.

3. Many sleep episodes begin at one of two peak phases in the circadian
cycle-near the temperature maximum.

This model is based on two pacemakers: Circadian rhythm of body tem-
perature and the sleep-wake cycle. These pacemakers are assumed to be
coupled. Each accelerates or slows the other depending only on their mutual
phase relation and this model ignores such variables as amplitude, where
observes only phase. This simple mathematical model uses the assumptions
that its component oscillators have circular state spaces and more impor-
tantly they only interact through phase differences.

4.2 The Structure of the Model

Strogatz [2] used the equation of a coupled oscillators, as shown in section 3.1,
to model the interaction between human-circadian rhythms and the sleep-
wake cycle. However in this model he uses a different structure, but it still
behaves the same way as shown in section 3.1{

θ̇1 = ω1 − C1 cos 2π(θ2 − θ1)
θ̇2 = ω2 + C2 cos 2π(θ1 − θ2)

where θ1 and θ2 are the phases of the two oscillators which are real num-
bers and we considered them as points on the circle of unit circumference.
ω1, ω2 are intrinsic frequencies and C1, C2 are coupling strengths.

All the parameters are taken to be non-negative. The chosen form of the
coupling is such that the first oscillator slows down and the second speeds
up when they are in phase. This property is suggested by the observed mod-
ulations of sleep-wake cycle lengths as the activity and temperature rhythms
cross through each other during internal desynchronization.
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Figure 17: Structure of the PHASE model. Sleep-wake and temperature
rhythms are controlled by different ”phase-only” oscillators, but these oscil-
lators are coupled.

In this model, low temperature occurs when θ1 = 0 and sleep occurs
when 0 ≤ θ2 ≤ F , where F is a parameter controlling the sleep fraction. We
adopt the conventions that the first oscillator drives the circadian tempera-
ture rhythm, while the second oscillator drives the sleep-wake cycle. Sleep is
defined to occupy some fraction F of the θ2 circle:

θ2 = 0 at sleep onset

θ2 = F at wake-up.

In this situation, 0 ≤ F ≤ 1, and usually F ∼ 1/3, since people about
a third of the time. Since sleep onset during internal synchrony occurs near
low temperature, we take θ1 = 0 as circadian phase 0, the minimum of the
endogenous temperature cycle.
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4.3 Synchronicity

To analyze the synchronization and desynchronization of the constituent os-
cillators, consider the phase difference:

ψ = θ1 − θ2
such that

ψ̇ = θ̇1 − θ̇2
where we can see that the equation can be viewed as

ψ̇ = Ω− C cos(2πψ)

where
Ω = ω1 − ω2

C = C1 + C2 > 0

In this particular case, Ω is the difference of the intrinsic frequencies of
the two oscillators and C is the total coupling in the system. Synchrony
is enforce when the total coupling C is larger than the magnitude |Ω| of
the frequency difference, thus ψ̇ = 0 has a solution. If ψ̇ did not have a
solution otherwise, the phase- difference continues to grow as one oscillator
periodically over takes the other. This idea is as one oscillator periodically
take over the other known as desynchronicity.

In the case for synchronicity, assume

K = |C
Ω
| > 1

Then the internally synchronized phase relation ψ̇ is obtained by solving
the equation above for ψ̇ = 0.

ψ∗ = ± 1

2π
cos−1(

Ω

C
)

The solutions for ψ∗ are implicit. The stable solution is for which
dψ̇

dψ
< 0.

Recall that the range for cos−1(x) is [0, π], therefore

ψ∗ = − 1

2π
cos−1(

Ω

C
)
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is the stable solution.
Using the equation for ψ∗, the compromise frequency denoted as ω∗ which

is adapted by the synchronized system. During internal synchrony, the sys-
tem becomes: 

θ̇1 = ω1 − C1(
Ω

C
)

θ̇2 = ω2 − C2(
Ω

C
)

Since θ̇1 = θ̇2 = ω∗ during synchrony, either the two equations simplifies
to

ω∗ =
C1ω2 + C2ω1

C1 + C2

This frequency differs from the intrinsic frequencies ω1 and ω2 by amounts
of ∆ω1 and ∆ω2, where ∆ω1 and ∆ω2 are

∆ω1 = ω∗ − ω1 = −C1
Ω

C

and

∆ω1 = ω∗ − ω2 = C2
Ω

C

Note that during synchrony the oscillators’ frequencies are shifted from
their intrinsic values in proportion to the coupling strengths:

|∆ω1

∆ω2

| = |C1

C2

|

4.4 Desynchronicity

The phase difference equation ψ̇ corresponds to desynchrony when K < 1,
i.e. when C < |Ω|. The phase difference ψ between the oscillators always
increases, sometimes slowly and sometimes rapidly, exhibiting what circadian
biologists call “internal relative coordination”. The oscillators periodically
move through a full cycle of mutual phase relations, with a beat frequency
β, obtained as follows. From ψ̇ the time required for ψ to change from 0 to
1 is 1

β
, given by:
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1

β
=

∫ 1
β

0

dt =

∫ 1

0

dψ

Ω− C cos(2πψ)

(Derivation of the beat frequency is in 4.7 Exact solutions)
Thus the beat frequency β satisfies

β = (Ω2 − C2)
1
2

= Ω(1− C2

Ω2
)−

1
2

With β, they’re will be two special cases:

1. For C = 0, the beat frequency reduces to β = Ω = ω1 − ω2,the non-
interactive beat frequency.

2. As C → |Ω|, then β → 0 according to a square root dependence for β.
Thus the tendency to synchronize grows rapidly as C approaches the
critical coupling.

An analytically convenient special case of the model is that in which C1 =
0, in other terms, there is no feedback onto the circadian pacemaker. As
discussed in the parameters estimates for human subjects section, this is a
reasonable first approximation, and it will be assumed in what follows.

Let the arbitrary zero of time be chosen such that θ1(0) = 0. Then the
scaling time

ω1 = 1

we obtain

θ1(t) = t

.
As shown in the exact solutions sections, ψ̇ may be solved exactly to pro-

duce a sophisticated (yet monotonic and importantly, an invertible) function
ψ(t).

Having solved for θ1(t) and ψ(t), we obtain θ2:

θ2(t) = θ1(t)− ψ(t)

= t− ψ(t)

.
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4.5 Model Prediction of an Empirical Relationship

The model’s prediction of various empirical relations give only implicit solu-
tion. For example, consider the model’s prediction of the dependence of the
duration (denoted as ρ) of the sleep episode on the phase φs of the circadian
temperature cycle at sleep on set. The experimental findings [2] shows that
sleep episodes beginning near the temperature trough tend to be short (∼ 7
hr), while those beginning near the temperature maximum are long (∼ 15
hr). The condition of φs: ρ relationship came as a surprise, and has been
discussed extensively in the literature and many theoretician have used it as
a benchmark to test their models [2]. Hence it is of interest to derive the
form of the φs: ρ relationship predicted by the PHASE model.

According to the protocol of θ2 in 4.2, sleep duration ρ is given by the
time required for θ2 to move from 0 to F. The circadian phase φs of sleep
onset is given by θ1 when θ2 = 0. To compute the φs: ρ relationship, it is
most convenient to choose a new origin of time, with t = 0 at sleep onset,
meaning:

θ2(0) = 0

θ1(0) = φs

ψ(0) = θ1(0)− θ2(0) = φs

.
Now to find the time at which wake-up occurs, we seek ρ such that:

θ2(ρ) = F

θ1(ρ) = φs + ρ

ψ(ρ) = φs + ρ− F

Together, ψ(0) and ψ(ρ) form an implicit set of equations for ρ, as a
function of φs and F. Due to the trigonometric form of ψ, the solution for ρ
requires graphical or numerical techniques.

One such graphical method is indicated in figure 18 below.
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Figure 18: Graphical construction of φs: ρ relationship in the PHASE model.

As shown in section 4.4 and the exact solutions section, the governing
equations, with C1 = 0 may be integrated exactly to yield the curves θ2(t) and
ψ(t). Initial conditions were θ1(0) = θ2(0) = 0, and the integration continued
until all mutual phase relations ψ between 0 and 1 had been attained. Thus,
all possible circadian phases of sleep onset are attained, since φs = ψ when
θ2 = 0. In order to find ρ(φs), a multi-step procedure is to be followed by
using figure 18.

i. Choose φs, the phase of sleep onset.

ii. Find ts, such that ψ(ts) = φs. This is doable since ψ is an invertible
function.

iii. Regarding ts as the time of sleep onset, find (the first) tw such that
θ2(tw) = θ2(ts) + F .

iv. Therefore tw represents the time of wake-up and so ρ = tw−ts. As figure
18 graph b shows that long sleep arises when the phase of mid-sleep falls
near the inflection point of θ2(t). Thus the longest sleeps are predicted
to begin in the first half of the circadian cycle.
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The steps of the graphical construction can be summarized in term of
ψ−1 and θ−12 , the inverse functions to ψ(t) and θ2(t), respectively.

For notational simplicity, let

g = ψ−1

and
h = θ−12

From step (ii),
g(φs) = ts

From step (iii),

tw = h(θ2(ts) + F ) = h(θ2(g(φs)) + F )

.
Therefore,

ρ(φs) = h(θ2(g(φs)) + F )− g(φs)

.
The equation above is the first instance of an exact expression for the φs:

ρ relation derived from a mathematical model of the sleep- wake cycle.

4.6 Parameter Estimates for Human Subjects

The equations shown in section 4.3, specifically from ψ∗ onward, those equa-
tions may be used to estimate the coupling strengths C1, C2 for typical human
subjects. When internal synchrony is lost, the period of the sleep-wake cycle
lengthens by much more than that of the temperature cycle shortens.

Here we expect:
C1 << C2

Since Ω = C at the onset of desynchorony, and C = C1 + C2 ∼ C2, the
frequency difference Ω provides an estimate of C2:

C2 ∼ frequency difference Ω observed at onset of desynchrony

Choosing units where ω1 = 1, a typical value of Ω would be
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Ω ∼ 1

6
∼= 0.16(∼ 6 day beat period)

Hence,

C2 ∼ 0.16

From ∆ω1 and ∆ω2 and the information above,

∆ω2 ∼ 0.16

To obtain C1, we use Wever’s result that after desynchrony, the temper-
ature cycle shortens by ∼ 0.7 hr. For a synchronized period of 25.5 hr, this
corresponds to

ω∗ =
24.8

25.5
∼= 0.97

.
Since

∆1 = ω∗ − ω1

∼ 0.97− 1.0

−0.03

we find from ∆1, and ∆2 that

C1 = |C2∆1

∆2

|

∼ 0.03

|C1

C2

| ∼ |0.03

0.16
| ∼ 1

5
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4.7 Exact Solution for θ1 and θ2

We consider the system{
θ̇1 = 1

θ̇2 = ω + C cos(2π(θ1 − θ2))

This system is similar to the PHASE model in section 4.2, but for this
case C1 = 0. Time is scaled so that ω1 = 1; then ω2 become ω and C2

becomes C in this new notation.
Let

ψ = θ1 − θ2
.

Then

ψ̇ = 1− ω − C cos(2πψ)

= Ω− C cos(2πψ)

where

Ω = 1− ω

.
Rescale time again: set

T = Ωt

and let

ψ
′
=
dψ

dT

Then

ψ
′
= 1− k cos(2πψ)

where

k =
C

Ω
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Here k represents a dimensionless coupling constant; desynchrony occurs
when

k < 1

The equation ψ
′

can be solved by separation of variables, followed by
integration but using the substitution

x = tan(πψ)

we obtain the following

T + constant =

∫
dψ

1− k cos(2πψ)

= (
1

π(1 + k)b
) arctan(x/b)

where

b2 = (1− k)/(1 + k)

The equation that solved ψ
′
may be solved for x and then for ψ to produce

ψ(t) = (1/π) arctan(u(t))

where

u(t) = b tan(πβt+ C0)

β = Ω(1− k2)1/2is the beat frequency

C0 = arctan((1/b) tan(πψ0))

ψ0 = ψ(t = 0)is the intial condition

b2 = (1− k)/(1 + k)

k = C/(1− ω)is the dimensionless coupling.

These equations above solve the equation by ψ̇ for the desynchronized
case assumed by k < 1. Then θ1 and θ2 are easily solved for.
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Monotonicity of θ2(t)

Around the discussion of figure 18, it was mentioned that θ2(t) is a mono-
tonic function of t, for certain reasonable choice of parameters. All that is
needed is C < |Ω| and ω > 1/2 (activity rhythm period is less than ∼ 50
hr). The monotonicity of θ2 is derived as follows:

ω2 > 1/2 =⇒ ω2 > 1− ω2

=⇒ ω > Ωby ω1 = 1 and Ω = ω1 − ω2

=⇒ ω2 + Ω cos(2πψ) > 0,∀ψ
=⇒ ω2 + C2 cos(2πψ) > 0, sinceC2 ≤ C ≤ |Ω|

=⇒ θ̇2 > 0, from the model

=⇒ θ2(t), is monotone in t, as required.

5 Bifurcation on the Tours and Oscillator Death[3]

Since about the 1960 mathematical biologists have been studying simplified
model of coupled oscillators. Oscillator Death in System of coupled Neural
Oscillators by Ermentrout and Kopel is one of the interesting models. In a
paper on system of neural oscillators, Eremntrout and kople illustrated the
notion of “Oscillator death” with the following model:{

θ̇1 = ω1 + sin(θ1) cos(θ2)

θ̇2 = ω2 + sin(θ2) cos(θ1)

Where ω1, ω2 ≥ 0
In this section we classify all the different behavior that the solution to

the above equation have as the parameters vary in the positive quadrant of
[ω1, ω2] - plane and describe each bifurcation.

Using the equations above, let φ = θ1 + θ2 and ψ = θ1 − θ2. Then
by trigonometric formulas, we can show that the system has the following
equivalent forms:

φ̇ = ω1 + ω2 + sin(φ) and ψ̇ = ω1 − ω2 + sin(ψ)
Thus, the system is uncoupled in these variables. With this information,

it follows that:
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1. If ω1 > ω2 + 1 then Oscillators are independent, the solutions
are quasi-periodic, with two periods

Since ω1 + ω2 > ω1 − ω2 > 1 from the information from 5.1,

φ = µ1t+ Φ and φ = µ2t+ Ψ where µ1 > µ > 0

Φ is periodic of period T1 =
2π

µ1

and Ψ is periodic of period T2 =
2π

µ2

There is neither phase locking, nor oscillator death. Each oscillator
oscillates independently, although with greatly modified phases:

θ1 =
µ1 + µ2

2
t+

1

2
(Φ + Ψ) and θ2 =

µ1 − µ2

2
t =

1

2
(Φ−Ψ)

instead of the uncoupled phases θj = ωj(t − tj). The Frequencies are
not constant either that is:

θ̇1 =
µ1 + µ2

2
+

1

2
(Φ̇ + Ψ̇) and θ̇2 =

µ1 − µ2

2
=

1

2
+ (Φ̇− Ψ̇)

Finally, not that the solution are quasi-periodic, with period T1 and T2.
When checking for periodicity or quasi-periodicity, it is vital to keep
in mind the θ1 and θ2 are angles, so that behavior of the form θj = µt

corresponds to a period T =
2π

µ
.

2. If ω1 = ω2 + 1, then bifurcation into phase locking. Φ has the
same form as θ̇1; however, the equation for Ψ in ψ̇ has a semi-stable
critical point Ψ = π/2 + 2nπ,for some integer n. Phase locking is semi-
stable: small perturbation can take the system out of phase lock. Then
the phase Ψ difference increases by 2π, and phase locking occurs again.

Consider the scenario in case 1, as ω1 − ω2 decreases to 1. Then µ2

decreases to 0 and T2 blows up to inf. Therefore, ψ becomes very slow
varying- a constant for “short enough” time periods, and the oscillator’s
behavior approximates that of a phase locked one, with a common
frequency.

3. If |ω2+1| < ω1 < ω2+1, then the phase lock is a global attractor.
Since |ω1−ω2| < 1, the equation for ψ has two fixed points, a stable one
(denoted as ψs) and an unstable one (denoted as ψu). Thus a constant
phase difference ψ = ψs is a global attractor. Another thing is that
ω1 + ω2 > 1 and 5.1 produces

30



φ = µt+ Φ where µ1 > 0 and Φ is periodic of period T1 =
2π

µ1

Therefore the attracting solution is θj =
1

2
µ1t +

1

2
Φ̇. This solution is

known as a limit cycle, with a period T − 1.

4. If ω1 + ω2 = 1, then bifurcation to oscillator death to phase
locking. The equation for ψ has the same critical points ψu and ψs as
in the third scenario, while the equation for φ has a single, semi-stable
fixed points π/2 + 2nπ. The system then approaches, as t → inf, to
the fixed point φ = π/2+2nπ and φ = φs. However, this point is semi-
stable, so a small disturbance can take φ out of equilibrium. Then φ
increases by 2π, til it reaches the critical point again.

5. If ω1 + ω2 < 1, then oscillator death. Since the ωj are positive,
|ω1 − ω2| < 1. Thus both equations ˙phi and ˙psi have fixed points, one
unstable for each (φu and ψu), and another which is a stable global
attractor (φs and ψs). Therefore the system has a global attractor,
given by

(θ1, θ2) =
1

2
(φs + ψs, φs − ψs)

Remark:
1

2
(φs+ψu, φs−ψu) and

1

2
(φu+ψs, φu−ψs) are saddles, while

1

2
(φu + ψu, φu − ψu) is an unstable node.

6. If ω2 = ω1 + 1, then a bifurcation into (out of) phase locking.
This is the same as case 2, by the system’s symmetry.

7. If ω2 > ω1+1, then oscillators “independent”, the solutions are
quasi-periodic, with two periods. This is the same thing as case 1
by the systems symmetry.
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Figure 19: Oscillator death and bifurcation in the plane. Regions in the
positive quadrant of the [ω1, ω2]-plane corresponding to different behaviors
θ̇1, θ̇2 have. These are: 2: where ω1 − ω2 = 1, 4: ω1 + ω2 = 1 and 6: where
ω2 − ω1 = 1

5.1 Analysis on Section 5

Consider {
φ̇ = 1−K sin(φ); 0 < K < 1

φ(t0) = 0

Let a =
1

2π

∫ 2π

0

dφ

1−K sin(φ)
; let µ =

1

a
By separation of variables:∫ φ(t)
0

dφ

1−K sin(φ)
= t− t0

Let F (x) =
∫ x
0

dφ

1−K sin(φ)
=
∫ x
0

(
1

1−K sin(φ)
− a)dφ+ ax
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where f(x) =
∫ x
0

(
1

1−K sin(φ)
− a)dφ

So f(0) = f(2π) = 0, so f is periodic with a period of 2π.
Thus

F ′ > 0 =⇒ ∃F−1

.
Now let

Φ(
1

a
y) = F−1(y)− y

a

Φ(2π) = F−1(2aπ)− 2π

Note: F (2π) =
∫ 2π

0

dφ

1−K sin(φ)
= 2πa =⇒ F−1(2πa) = 2π

So Φ(2π) = 0.
Therefore,

F−1(y) = Φ(
y

a
) +

y

a

where Φ is 2π- periodic.
So

F (φ(t)) = t− t0 =⇒ φ(t) = F−1(t− t0) = µ(t− t0) + Φ(µ(t− t0))

Let φ∗(t) = µt+ Φ(µt)

Note that sin(φ∗) is
2π

µ
= T periodic.

Let M =
1

T

∫ T
0

sin(φ∗(t))dt

By change of variables

1

T

∫ 2π

0

sin(φ)

1−K sin(φ)
dφ =

1− µ
K

Let

θ(µt) =

∫ t

0

(sin(φ∗(s))−M)ds

=

∫ φ∗(t)

0

sin(φ)

1−K sin(φ)
dφ− 1− µ

K
t

= − 1

K
Φ(µt)
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Thus, φ∗(t) = µt−Kθ(µt)
Now let

Θ(µt) =

∫ t

0

[sin(µt−Kθ(µt))−M ]ds

Take a derivative with respect to t

µΘ
′
(µt) = sin(µt−Kθ(µt))−M

=⇒ µΘ
′
(µt) = sin(µt) cos(Kθ(µt))− cos(µt) sin(Kθ(µt))−M

Recall that a = 1 +
K2

2
+O(K4)

µ =
1

a
= 1− K2

2
+O(K4)

Thus,

(1−K
2

2
+O(K4))Θ

′
= sin(µt)(1+O(K2)−cos(µt)(K+O(K3))−1

2
K+O(K3)

Θ
′
= sin(µt) +O(K)

Therefore,

Θ = 1− cos(µt) +O(K)

and

φ∗ = µt−K cos(µt) +O(K2)
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6 Discussions

We have shown that a simple model of the human sleep-wake cycle can ac-
count for a variety of phenomena observed in temporal isolation experiments.
The model proposed -here is the first analytically tractable model of the hu-
man circadian system, yet its performance is comparable to that of more
elaborate models proposed by others. However there are a number of limita-
tions in the present study. First, we have concentrated on the autonomous
sleep-wake dynamics revealed in free-run experiments. While this is a neces-
sary first step, one would ultimately like to address the entrainment of the
human circadian system by external synchronizers, and its disruption during
jet lag or rotating shift work schedules.A second limitation of our approach is
its phenomenological character. The model parameters do not correspond in
any obvious way to anatomical, neural, or pharmacological entities. It is also
unclear how to relate the human circadian system to that of other organisms
including mammals.Finally, the model proposed here treats sleep as a homo-
geneous state. It ignores the fascinating questions surrounding the various
stages of sleep: rapid eye-movement (REM) sleep, in which dreams occur;
slow-wave sleep, the deepest stage which in pathological cases is associated
with bedwetting, sleepwalking, and night terrors; and the lighter stages of
non-REM sleep, which mediate the transitions between dreaming, deep sleep,
and wakefulness. These sleep stages oscillate in a 90-min cycle, and the in-
teraction of this REM/non-REM cycle with the circadian cycle represents
one of the most exciting open problems of theoretical sleep research.
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